Adenosine receptors and signaling in the kidney.
نویسندگان
چکیده
It is now generally accepted that adenosine is capable of regulating a wide range of physiological functions. Nowhere is the diversity of this action better illustrated than in the kidney. When adenosine binds to plasma membrane receptors on a variety of cell types in the kidney, it stimulates functional responses that span the entire spectrum of renal physiology, including alterations in hemodynamics, hormone and neurotransmitter release, and tubular reabsorption. These responses to adenosine appear to represent a means by which the organ and its constituent cell types can regulate their metabolic demand such that it is maintained at an appropriate level for the prevailing metabolic supply. Extracellular adenosine, produced from the hydrolysis of adenosine 5'-monophosphate and stimulated by increased substrate availability and enzyme induction, acts on at least two types of cell surface receptors to stimulate or inhibit the production of cyclic adenosine-3',5'-monophosphate and also acts in some renal cells to stimulate the production of inositol phosphates and elevation of cytosolic calcium concentration. To understand when and why this complicated system becomes activated, how it interacts with other known extracellular effector systems, and ultimately how to manipulate the system to therapeutic advantage by selective agonists or antagonists, requires a detailed knowledge of renal adenosine receptors and their signaling mechanisms. The following discussion attempts to highlight our knowledge in this area, to present a modified hypothesis for adenosine as a feedback regulator of renal function, and to identify some important questions regarding the specific cellular mechanisms of adenosine in renal cell types.
منابع مشابه
P138: Are Depression and Anxiety Affected by Adenosine A2A Receptors?
Adenosine acts as neuromodulator in the brain, which its involvement in a wide range of brain processes and diseases has been studied, such as epilepsy, sleep, anxiety, panic disorder, Alzheimer’s disease, Parkinson’s disease and schizophrenia. Adenosine receptors have been detected: A1R, A2AR (A2AR), A2BR, and A3R. A1R and A2R inhibit cAMP production, while A2AR and A2BR stimulate cAMP product...
متن کاملRole of adenosine receptors and protein phosphatases in the reversal of pentylenetetrazol-induced potentiation phenomenon by theta pulse stimulation in the CA1 region of rat hippocampal slices
The effect of theta pulse stimulation (TPS) on pentylenetetrazol (PTZ)-induced long-term potentiation of population spikes (PS) was studied in the hippocampal CA1 in vitro. A transient PTZ application produced a long-lasting enhancement of PS amplitude. A 3-min episode of TPS delivered at a higher intensity produced complete reversal of the PTZ potentiation when delivered during the last minute...
متن کاملCEREBRAL BLOOD FLOW REGULATION IN ANESTHETIZED MORPHINE DEPENDENT RATS: THE ROLE OF THE ADENOSINE SYSTEM
Adenosine has many of the characteristics of a regulator of cerebral blood flow and adenosine receptors change in morphine dependency. In this study the changes in adenosine receptors' responsiveness of pial vessels in the hind limb area of the sensory cortex were evaluated in morphine dependent rats (MDR) using the laser Doppler flowmetry technique. Adult male Sprague Dawley rats (250-350 ...
متن کاملRole of adenosine receptors and protein phosphatases in the reversal of pentylenetetrazol-induced potentiation phenomenon by theta pulse stimulation in the CA1 region of rat hippocampal slices
The effect of theta pulse stimulation (TPS) on pentylenetetrazol (PTZ)-induced long-term potentiation of population spikes (PS) was studied in the hippocampal CA1 in vitro. A transient PTZ application produced a long-lasting enhancement of PS amplitude. A 3-min episode of TPS delivered at a higher intensity produced complete reversal of the PTZ potentiation when delivered during the last minute...
متن کاملPhysiological role of adenosine and its receptors in tissue hypoxia-induced
It is well known that the metabolic factors play an important role in the regulation of angiogenesis. Increased metabolic activity leads to decreased oxygen levels and causes tissue hypoxia. Hypoxia starts different signals to stimulate angiogenesis and promotes oxygen delivery to tissues. It has been suggested that released adenosine from hypoxic tissues plays a vital role in angiogenesis. ...
متن کاملEffect of imipramine and desipramine on adenosine receptors in isolated rat atria
The effect of different doses (1-50 µ M) of imipramine (IMI) and desipramine (DES) on the rate and force of contraction of isolated rat atria was studied. IMI and DES produced a dose-dependent increase in force of contraction (31- 94% for IMI and 35-118% for DES). Pretreatment of rats with reserpine (5 mg/kg) on the isolated atria with propranolol (1 µ g) inhibited the positive ionotropic eff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 17 2 شماره
صفحات -
تاریخ انتشار 1991